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Overview: Stimuli and a Stationary Life

• Linnaeus noted that flowers of different species 
opened at different times of day and could be 
used as a horologium florae, or floral clock

• Plants, being rooted to the ground, must 
respond to environmental changes that come 
their way

• For example, the bending of a seedling toward 
light begins with sensing the direction, quantity, 
and color of the light



Fig. 39-1
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Concept 39.1: Signal transduction pathways link 
signal reception to response

• Plants have cellular receptors that detect 
changes in their environment

• For a stimulus to elicit a response, certain cells 
must have an appropriate receptor

• Stimulation of the receptor initiates a specific 
signal transduction pathway
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• A potato left growing in darkness produces 
shoots that look unhealthy and lacks elongated 
roots

• These are morphological adaptations for 
growing in darkness, collectively called 
etiolation

• After exposure to light, a potato undergoes 
changes called de-etiolation, in which shoots 
and roots grow normally



Fig. 39-2

(a) Before exposure to light (b) After a week’s exposure to
natural daylight
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• A potato’s response to light is an example of 
cell-signal processing

• The stages are reception, transduction, and 
response



Fig. 39-3
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Reception

• Internal and external signals are detected by 
receptors, proteins that change in response to 
specific stimuli
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Transduction

• Second messengers transfer and amplify 
signals from receptors to proteins that cause 
responses



Fig. 39-4-1
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Fig. 39-4-2
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Fig. 39-4-3
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Response

• A signal transduction pathway leads to 
regulation of one or more cellular activities

• In most cases, these responses to stimulation 
involve increased activity of enzymes

• This can occur by transcriptional regulation or 
post-translational modification
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Transcriptional Regulation

• Specific transcription factors bind directly to 
specific regions of DNA and control 
transcription of genes

• Positive transcription factors are proteins that 
increase the transcription of specific genes, 
while negative transcription factors are proteins 
that decrease the transcription of specific 
genes
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Post-Translational Modification of Proteins

• Post-translational modification involves 
modification of existing proteins in the signal 
response

• Modification often involves the phosphorylation 
of specific amino acids
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De-Etiolation (“Greening”) Proteins

• Many enzymes that function in certain signal 
responses are directly involved in 
photosynthesis

• Other enzymes are involved in supplying 
chemical precursors for chlorophyll production
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Concept 39.2: Plant hormones help coordinate 
growth, development, and responses to stimuli

• Hormones are chemical signals that 
coordinate different parts of an organism
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The Discovery of Plant Hormones

• Any response resulting in curvature of organs 
toward or away from a stimulus is called a 
tropism

• Tropisms are often caused by hormones
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• In the late 1800s, Charles Darwin and his son 
Francis conducted experiments on 
phototropism, a plant’s response to light

• They observed that a grass seedling could 
bend toward light only if the tip of the coleoptile 
was present

• They postulated that a signal was transmitted 
from the tip to the elongating region

Video: PVideo: Phototropismhototropism
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• In 1913, Peter Boysen-Jensen demonstrated 
that the signal was a mobile chemical 
substance



Fig. 39-5c
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• In 1926, Frits Went extracted the chemical 
messenger for phototropism, auxin, by 
modifying earlier experiments



Fig. 39-6
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A Survey of Plant Hormones

• In general, hormones control plant growth and 
development by affecting the division, 
elongation, and differentiation of cells

• Plant hormones are produced in very low 
concentration, but a minute amount can greatly 
affect growth and development of a plant organ



Table 39-1
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Auxin

• The term auxin refers to any chemical that 
promotes elongation of coleoptiles

• Indoleacetic acid (IAA) is a common auxin in 
plants; in this lecture the term auxin refers 
specifically to IAA

• Auxin transporter proteins move the hormone 
from the basal end of one cell into the apical 
end of the neighboring cell



Fig. 39-7
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The Role of Auxin in Cell Elongation

• According to the acid growth hypothesis, auxin 
stimulates proton pumps in the plasma 
membrane

• The proton pumps lower the pH in the cell wall, 
activating expansins, enzymes that loosen the 
wall’s fabric

• With the cellulose loosened, the cell can 
elongate



Fig. 39-8

Cross-linking
polysaccharides

Cellulose 
microfibril

Cell wall
becomes 

more acidic.

2

1 Auxin
increases 

proton pump 
activity.

Cell wall–loosening
enzymes

Expansin

Expansins separate
microfibrils from cross-
linking polysaccharides.

3

4

5

CELL WALL
Cleaving allows

microfibrils to slide.

CYTOPLASM

Plasma membrane

H2 O

Cell
wallPlasma

membrane

Nucleus Cytoplasm
Vacuole

Cell can elongate.



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Lateral and Adventitious Root Formation

• Auxin is involved in root formation and 
branching
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Auxins as Herbicides

• An overdose of synthetic auxins can kill 
eudicots
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Other Effects of Auxin

• Auxin affects secondary growth by inducing cell 
division in the vascular cambium and 
influencing differentiation of secondary xylem
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Cytokinins

• Cytokinins are so named because they 
stimulate cytokinesis (cell division)
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Control of Cell Division and Differentiation

• Cytokinins are produced in actively growing 
tissues such as roots, embryos, and fruits

• Cytokinins work together with auxin to control 
cell division and differentiation
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Control of Apical Dominance

• Cytokinins, auxin, and other factors interact in 
the control of apical dominance, a terminal 
bud’s ability to suppress development of 
axillary buds

• If the terminal bud is removed, plants become 
bushier



Fig. 39-9
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Anti-Aging Effects

• Cytokinins retard the aging of some plant 
organs by inhibiting protein breakdown, 
stimulating RNA and protein synthesis, and 
mobilizing nutrients from surrounding tissues
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Gibberellins

• Gibberellins have a variety of effects, such as 
stem elongation, fruit growth, and seed 
germination
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Stem Elongation

• Gibberellins stimulate growth of leaves and 
stems

• In stems, they stimulate cell elongation and cell 
division
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Fruit Growth

• In many plants, both auxin and gibberellins 
must be present for fruit to set

• Gibberellins are used in spraying of Thompson 
seedless grapes



Fig. 39-10
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Germination

• After water is imbibed, release of gibberellins 
from the embryo signals seeds to germinate



Fig. 39-11
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Brassinosteroids

• Brassinosteroids are chemically similar to the 
sex hormones of animals

• They induce cell elongation and division in 
stem segments
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Abscisic Acid

• Abscisic acid (ABA) slows growth

• Two of the many effects of ABA:

– Seed dormancy

– Drought tolerance
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Seed Dormancy

• Seed dormancy ensures that the seed will 
germinate only in optimal conditions

• In some seeds, dormancy is broken when ABA 
is removed by heavy rain, light, or prolonged 
cold

• Precocious germination is observed in maize 
mutants that lack a transcription factor required 
for ABA to induce expression of certain genes



Fig. 39-12
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Drought Tolerance

• ABA is the primary internal signal that enables 
plants to withstand drought
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Ethylene

• Plants produce ethylene in response to 
stresses such as drought, flooding, mechanical 
pressure, injury, and infection

• The effects of ethylene include response to 
mechanical stress, senescence, leaf abscission, 
and fruit ripening
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The Triple Response to Mechanical Stress

• Ethylene induces the triple response, which 
allows a growing shoot to avoid obstacles

• The triple response consists of a slowing of 
stem elongation, a thickening of the stem, and 
horizontal growth



Fig. 39-13
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• Ethylene-insensitive mutants fail to undergo the 
triple response after exposure to ethylene

• Other mutants undergo the triple response in 
air but do not respond to inhibitors of ethylene 
synthesis



Fig. 39-14
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Senescence

• Senescence is the programmed death of plant 
cells or organs

• A burst of ethylene is associated with 
apoptosis, the programmed destruction of 
cells, organs, or whole plants
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Leaf Abscission

• A change in the balance of auxin and ethylene 
controls leaf abscission, the process that 
occurs in autumn when a leaf falls



Fig. 39-15
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Fruit Ripening

• A burst of ethylene production in a fruit triggers 
the ripening process
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Systems Biology and Hormone Interactions 

• Interactions between hormones and signal 
transduction pathways make it hard to predict 
how genetic manipulation will affect a plant

• Systems biology seeks a comprehensive 
understanding that permits modeling of plant 
functions
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Concept 39.3: Responses to light are critical for 
plant success

• Light cues many key events in plant growth 
and development

• Effects of light on plant morphology are called 
photomorphogenesis



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

• Plants detect not only presence of light but also 
its direction, intensity, and wavelength (color)

• A graph called an action spectrum depicts 
relative response of a process to different 
wavelengths

• Action spectra are useful in studying any 
process that depends on light
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Fig. 39-16b
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• There are two major classes of light receptors: 
blue-light photoreceptors and 
phytochromes
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Blue-Light Photoreceptors

• Various blue-light photoreceptors control 
hypocotyl elongation, stomatal opening, and 
phototropism
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Phytochromes as Photoreceptors

• Phytochromes are pigments that regulate many 
of a plant’s responses to light throughout its life

• These responses include seed germination and 
shade avoidance
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Phytochromes and Seed Germination

• Many seeds remain dormant until light 
conditions change

• In the 1930s, scientists at the U.S. Department 
of Agriculture determined the action spectrum 
for light-induced germination of lettuce seeds



Fig. 39-17
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• Red light increased germination, while far-red 
light inhibited germination

• The photoreceptor responsible for the opposing 
effects of red and far-red light is a phytochrome



Fig. 39-18
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• Phytochromes exist in two photoreversible 
states, with conversion of Pr to Pfr triggering 
many developmental responses



Fig. 39-19
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Phytochromes and Shade Avoidance

• The phytochrome system also provides the 
plant with information about the quality of light

• Shaded plants receive more far-red than red 
light

• In the “shade avoidance” response, the 
phytochrome ratio shifts in favor of Pr when a 
tree is shaded
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Biological Clocks and Circadian Rhythms

• Many plant processes oscillate during the day

• Many legumes lower their leaves in the 
evening and raise them in the morning, even 
when kept under constant light or dark 
conditions



Fig. 39-20
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• Circadian rhythms are cycles that are about 
24 hours long and are governed by an internal 
“clock”

• Circadian rhythms can be entrained to exactly 
24 hours by the day/night cycle

• The clock may depend on synthesis of a 
protein regulated through feedback control and 
may be common to all eukaryotes
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The Effect of Light on the Biological Clock

• Phytochrome conversion marks sunrise and 
sunset, providing the biological clock with 
environmental cues
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Photoperiodism and Responses to Seasons

• Photoperiod, the relative lengths of night and 
day, is the environmental stimulus plants use 
most often to detect the time of year

• Photoperiodism is a physiological response to 
photoperiod
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Photoperiodism and Control of Flowering

• Some processes, including flowering in many 
species, require a certain photoperiod

• Plants that flower when a light period is shorter 
than a critical length are called short-day 
plants

• Plants that flower when a light period is longer 
than a certain number of hours are called long- 
day plants

• Flowering in day-neutral plants is controlled 
by plant maturity, not photoperiod
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Critical Night Length

•
 

In the 1940s, researchers discovered that 
flowering and other responses to photoperiod 
are actually controlled by night length, not day 
length
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•
 

Short-day plants are governed by whether the 
critical night length sets a minimum number of 
hours of darkness

•
 

Long-day plants are governed by whether the 
critical night length sets a maximum number of 
hours of darkness
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• Red light can interrupt the nighttime portion of 
the photoperiod

• Action spectra and photoreversibility 
experiments show that phytochrome is the 
pigment that receives red light



Fig. 39-22
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• Some plants flower after only a single exposure 
to the required photoperiod

• Other plants need several successive days of 
the required photoperiod

• Still others need an environmental stimulus in 
addition to the required photoperiod

– For example, vernalization is a pretreatment 
with cold to induce flowering
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A Flowering Hormone?

• The flowering signal, not yet chemically 
identified, is called florigen

• Florigen may be a macromolecule governed by 
the CONSTANS gene



Fig. 39-23
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Meristem Transition and Flowering

• For a bud to form a flower instead of a 
vegetative shoot, meristem identity genes must 
first be switched on

• Researchers seek to identify the signal 
transduction pathways that link cues such as 
photoperiod and hormonal changes to the gene 
expression required for flowering
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Concept 39.4: Plants respond to a wide variety of 
stimuli other than light

• Because of immobility, plants must adjust to a 
range of environmental circumstances through 
developmental and physiological mechanisms
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Gravity

• Response to gravity is known as gravitropism

• Roots show positive gravitropism; shoots show 
negative gravitropism
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• Plants may detect gravity by the settling of 
statoliths, specialized plastids containing 
dense starch grains

Video: Video: GGravitropismravitropism



Fig. 39-24
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• Some mutants that lack statoliths are still 
capable of gravitropism

• Dense organelles, in addition to starch 
granules, may contribute to gravity detection
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Mechanical Stimuli

• The term thigmomorphogenesis refers to 
changes in form that result from mechanical 
disturbance

• Rubbing stems of young plants a couple of 
times daily results in plants that are shorter 
than controls



Fig. 39-25
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• Thigmotropism is growth in response to touch

• It occurs in vines and other climbing plants

• Rapid leaf movements in response to 
mechanical stimulation are examples of 
transmission of electrical impulses called 
action potentials

Video: MVideo: Mimosa Leafimosa Leaf
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Fig. 39-26ab

(a) Unstimulated state (b) Stimulated state



Fig. 39-26c

Leaflets
after 
stimulation

(c) Cross section of a leaflet pair in the stimulated state (LM)

Side of pulvinus with
flaccid cells

Side of pulvinus with
turgid cells

VeinPulvinus
(motor 
organ)

0.
5 

µm



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Environmental Stresses

• Environmental stresses have a potentially 
adverse effect on survival, growth, and 
reproduction

• Stresses can be abiotic (nonliving) or biotic 
(living)

• Abiotic stresses include drought, flooding, salt 
stress, heat stress, and cold stress
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Drought

• During drought, plants reduce transpiration by 
closing stomata, slowing leaf growth, and 
reducing exposed surface area

• Growth of shallow roots is inhibited, while 
deeper roots continue to grow
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Flooding

• Enzymatic destruction of root cortex cells 
creates air tubes that help plants survive 
oxygen deprivation during flooding



Fig. 39-27
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Salt Stress

• Salt can lower the water potential of the soil 
solution and reduce water uptake

• Plants respond to salt stress by producing 
solutes tolerated at high concentrations

• This process keeps the water potential of cells 
more negative than that of the soil solution
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Heat Stress

• Excessive heat can denature a plant’s 
enzymes

• Heat-shock proteins help protect other 
proteins from heat stress
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Cold Stress

• Cold temperatures decrease membrane fluidity

• Altering lipid composition of membranes is a 
response to cold stress

• Freezing causes ice to form in a plant’s cell 
walls and intercellular spaces
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Concept 39.5: Plants respond to attacks by 
herbivores and pathogens

• Plants use defense systems to deter herbivory, 
prevent infection, and combat pathogens
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Defenses Against Herbivores

• Herbivory, animals eating plants, is a stress 
that plants face in any ecosystem

• Plants counter excessive herbivory with 
physical defenses such as thorns and chemical 
defenses such as distasteful or toxic 
compounds

• Some plants even “recruit” predatory animals 
that help defend against specific herbivores
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• Plants damaged by insects can release volatile 
chemicals to warn other plants of the same 
species

• Methyljasmonic acid can activate the 
expression of genes involved in plant defenses
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Defenses Against Pathogens

• A plant’s first line of defense against infection is 
the epidermis and periderm

• If a pathogen penetrates the dermal tissue, the 
second line of defense is a chemical attack that 
kills the pathogen and prevents its spread

• This second defense system is enhanced by 
the inherited ability to recognize certain 
pathogens
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• A virulent pathogen is one that a plant has 
little specific defense against

• An avirulent pathogen is one that may harm 
but does not kill the host plant
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• Gene-for-gene recognition involves 
recognition of pathogen-derived molecules by 
protein products of specific plant disease 
resistance (R) genes

• An R protein recognizes a corresponding 
molecule made by the pathogen’s Avr gene

• R proteins activate plant defenses by triggering 
signal transduction pathways

• These defenses include the hypersensitive 
response and systemic acquired resistance
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The Hypersensitive Response

• The hypersensitive response

– Causes cell and tissue death near the infection 
site

– Induces production of phytoalexins and PR 
proteins, which attack the pathogen

– Stimulates changes in the cell wall that confine 
the pathogen
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Systemic Acquired Resistance

• Systemic acquired resistance causes 
systemic expression of defense genes and is a 
long-lasting response

• Salicylic acid is synthesized around the 
infection site and is likely the signal that 
triggers systemic acquired resistance
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You should now be able to:

1. Compare the growth of a plant in darkness 
(etiolation) to the characteristics of greening 
(de-etiolation)

2. List six classes of plant hormones and 
describe their major functions

3. Describe the phenomenon of phytochrome 
photoreversibility and explain its role in light- 
induced germination of lettuce seeds

4. Explain how light entrains biological clocks
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5. Distinguish between short-day, long-day, and 
day-neutral plants; explain why the names are 
misleading

6. Describe how plants tell up from down

7. Distinguish between thigmotropism and 
thigmomorphogenesis

8. Describe the challenges posed by, and the 
responses of plants to, drought, flooding, salt 
stress, heat stress, and cold stress
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9. Describe how the hypersensitive response 
helps a plant limit damage from a pathogen 
attack
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